• Improving the phosphorus budget of European agricultural soils

    Phosphorus budget per each region as kg P ha−1. The vertical bars show the annual sum of P inputs (violet) and outputs (green) per country (expressed in tonnes).

    Panagos, P.a, Köningner, J.a, Ballabio, C.a, Liakos, L.a, Muntwyler, A.a, Borrelli, P.b , Lugato, E.a, 2022. Improving the phosphorus budget of European agricultural soils. Science of The Total Environment 158706. https://doi.org/10.1016/j.scitotenv.2022.158706

    a European Commission, Joint Research Centre (JRC), Ispra, Italy
    b Department of Science, Roma Tre University, Rome, Italy

    Despite phosphorus (P) being crucial for plant nutrition and thus food security, excessive P fertilization harms soil and aquatic ecosystems. Accordingly, the European Green Deal and derived strategies aim to reduce P losses and fertilizer consumption in agricultural soils. The objective of this study is to calculate a soil P budget, allowing the quantification of the P surpluses/deficits in the European Union (EU) and the UK, considering the major inputs (inorganic fertilizers, manure, atmospheric deposition, and chemical weathering) and outputs (crop production, plant residues removal, losses by erosion) for the period 2011–2019.

    The Land Use/Cover Area frame Survey (LUCAS) topsoil data include measured values for almost 22,000 samples for both available and total P. With advanced machine learning models, we developed maps for both attributes at 500 m resolution. We estimated the available P for crops at a mean value of 83 kg ha−1 with a clear distinction between North and South. The ratio of available P to the total P is about 1:17.

    The inorganic fertilizers and manure contribute almost equally as P inputs (mean 16 ± 2 kg P ha−1 yr−1 at 90 % confidence level) to agricultural soils, with high regional variations depending on farming practices, livestock density, and cropping systems. The P outputs came mainly from the exportation by the harvest of crop products and residues (97.5 %) and, secondly, by erosion. Using a sediment distribution model, we quantified the P fluxes to river basins and sea outlets.

    In the EU and UK, we estimated an average surplus of 0.8 kg P ha−1 yr−1 with high variability between countries with some regional variations. The P annual budget at regional scale showed ample possibility to improve P management by both reducing inputs in regions with high surplus (and P soil available) and rebalancing fertilization in those at risk of soil fertility depletion.

    [Διαβάστε περισσότερα...]
  • Phosphorus plant removal from European agricultural land

    Total phosphorus removal per country and region

    Panagos, Panosa, Anna Muntwylera, Leonidas Liakosa, Pasquale Borrellib, Irene Biavettia, Mariia Bogonosc, and Emanuele Lugatoa. 2022. “Phosphorus Plant Removal from European Agricultural Land.” Journal of Consumer Protection and Food Safety, February. https://doi.org/10.1007/s00003-022-01363-3.

    a European Commission, Joint Research Centre (JRC), Ispra, Italy
    b Dipartimento di Scienze della Terra e dell’Ambiente, Università degli Studi di Pavia, Pavia, Italy
    c European Commission, Joint Research Centre (JRC), Seville, Spain

    Phosphorus (P) is an important nutrient for all plant growth and it has become a critical and often imbalanced element in modern agriculture. A proper crop fertilization is crucial for production, farmer profits, and also for ensuring sustainable agriculture. The European Commission has published the Farm to Fork (F2F) Strategy in May 2020, in which the reduction of the use of fertilizers by at least 20% is among one of the main objectives. Therefore, it is important to look for the optimal use of P in order to reduce its pollution effects but also ensure future agricultural production and food security. It is essential to estimate the P budget with the best available data at the highest possible spatial resolution. In this study, we focused on estimating the P removal from soils by crop harvest and removal of crop residues. Specifically, we attempted to estimate the P removal by taking into account the production area and productivity rates of 37 crops for 220 regions in the European Union (EU) and the UK. To estimate the P removal by crops, we included the P concentrations in plant tissues (%), the crop humidity rates, the crop residues production, and the removal rates of the crop residues. The total P removal was about 2.55 million tonnes (Mt) (± 0.23 Mt), with crop harvesting having the larger contribution (ca. 94%) compared to the crop residues removal. A Monte-Carlo analysis estimated a ± 9% uncertainty. In addition, we performed a projection of P removal from agricultural fields in 2030. By providing this picture, we aim to improve the current P balances in the EU and explore the feasibility of F2F objectives.

    Total phosphorus removal per country and region
    Total phosphorus removal per country and region. Green bars aggregate P crop removal per country and brown ones are the aggregated P removal with residues
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported
This work by Leonidas Liakos is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported.